## MARK SCHEME for the October/November 2011 question paper

## for the guidance of teachers

# **4037 ADDITIONAL MATHEMATICS**

4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



| Page 2 | Page 2 Mark Scheme: Teachers' version |      | Paper |
|--------|---------------------------------------|------|-------|
|        | GCE O Level – October/November 2011   | 4037 | 12    |

### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
   B2, 1, 0 means that the candidate can earn anything from 0 to 2.

| Page 3 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE O Level – October/November 2011 | 4037     | 12    |

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

### Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA-1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

|   | Page 4                                                                    |                                                                | : Teachers' version |                                                                   | Syllabus<br>4037                          | Paper<br>12      |
|---|---------------------------------------------------------------------------|----------------------------------------------------------------|---------------------|-------------------------------------------------------------------|-------------------------------------------|------------------|
|   |                                                                           | GCE O Level – Od                                               | ctober/November 2   | 011                                                               | 4037                                      | 12               |
| 1 | $\frac{1}{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}$ |                                                                | M1                  |                                                                   | r adding fractions in s/tan/cot correctly | terms of         |
|   | $=\frac{\sin\theta\cos\theta}{\sin^2\theta+\cos^2\theta}$                 | $\overline{	heta}$                                             | M1                  | M1 fo                                                             | r use of correct iden                     | tity             |
|   | $=\sin\theta\cos\theta$                                                   |                                                                | A1 [3]              | A1 for                                                            | r correct solution on                     | ly               |
|   | $\frac{\tan\theta}{\tan^2\theta+1} \text{ or } \frac{1}{2}$               | $\frac{\cot\theta}{\cot^2\theta+1}$                            | M1                  | M1 fo<br>correc                                                   | r adding fractions in<br>tly              | terms of tan/cot |
|   | $=\frac{\tan\theta}{\sec^2\theta}$ or $\frac{c}{\cos^2\theta}$            | $\frac{\operatorname{ot} \theta}{\operatorname{sec}^2 \theta}$ | M1                  | M1 for use of correct identity                                    |                                           | tity             |
|   | $=\sin\theta\cos\theta$                                                   |                                                                | A1                  | A1 for                                                            | r correct solution on                     | ly               |
| 2 | $(2y+1)^2 + y^2 =$<br>(or $5x^2 - 2x - 3$                                 |                                                                | M1                  | M1 for attempt to get an equation in terr<br>of one variable only |                                           | quation in terms |
|   | leading to $5y^2$                                                         | +4y-28=0                                                       | DM1                 | DM1<br>equati                                                     | for obtaining a 3 terr<br>on              | n quadratic      |
|   | (or $x^2 + \left(\frac{x-1}{2}\right)^2$                                  | $\left(-\frac{1}{2}\right)^2 = 29$ )                           | DM1                 | DM1<br>equati                                                     | for attempt to solve on                   | quadratic        |
|   | $x = -\frac{23}{5}, y = -$                                                | $\frac{14}{5}$ and                                             | A1                  | A1 for                                                            | r a pair of values                        |                  |
|   | x = 5, y = 2                                                              |                                                                | A1                  |                                                                   |                                           |                  |
|   | (5, 2) spotted g                                                          | ets B1                                                         | [5]                 |                                                                   |                                           |                  |

|   | Page 5                                                  |                             |            | Syllabus                                                                                                                  | Paper                 |
|---|---------------------------------------------------------|-----------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------|
|   | GCE O Level – October/November                          |                             | ovember 20 | 4037                                                                                                                      | 12                    |
| 3 | (i) $\frac{1}{\log_2 x}$ or                             | $\frac{\log_2 2}{\log_2 x}$ | B1         |                                                                                                                           |                       |
|   | (ii) $u^2 - 3u + (u-1)(u+1)$                            |                             | M1         | M1 for a correct attempt to obtain and<br>solve a quadratic equation in terms of $u$ o<br>$\log_2 x$<br>A1 for $u = 1, 2$ |                       |
|   | <i>u</i> = 1, 2                                         |                             | A1         |                                                                                                                           |                       |
|   |                                                         |                             | M1         | M1 for attempt to solve ar<br>form $\log_2 x = k$ leading t                                                               |                       |
|   | x = 2 and                                               | 1 x = 4                     | A1<br>[5]  | A1 for both                                                                                                               |                       |
| 4 | When $x = 2, y$                                         | = 9                         | B1         | B1 for $y = 9$                                                                                                            |                       |
|   | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{3}.6x.(3x)$ | $(^{2}+15)^{-\frac{1}{3}}$  | B1, B1     | B1 for $\frac{2}{3}.6x$ , B1 for $(3x^2)$                                                                                 | $+15)^{-\frac{1}{3}}$ |
|   | when $x = 2$ , $\frac{dy}{dx}$                          | $\frac{v}{x} = \frac{8}{3}$ |            |                                                                                                                           |                       |
|   | $\therefore$ grad of norm<br>normal : $y - 9 =$         | 2                           | M1<br>M1   | M1 for use of $m_1m_2 = -1$<br>M1 for attempt to find equ<br>must be using gradient of<br>line                            |                       |
|   | 8y + 3x = 78                                            |                             | A1<br>[6]  | A1 allow unsimplified                                                                                                     |                       |
| 5 | (i) $y^2 = m2^x$                                        | + <i>c</i>                  | M1         | M1 for use of straight line given                                                                                         | e equation as         |
|   | 81 = 80 + c = 1                                         | С                           | M1         | M1 for use of (16, 81)                                                                                                    |                       |
|   | $y^2 = 5(2^x)$                                          | )+1                         | A1         | A1 – do not allow if subse<br>work is seen                                                                                | equent incorrect      |
|   | (ii) $36 = 5(2^x)$                                      | )+1                         | M1         | M1 substitution of $y = 6$ in<br>equation in terms of $y^2$ and                                                           |                       |
|   | 1eading to                                              | $7 = 2^x$                   | DM1        | DM1 for correct solution of the form $2^x = k$                                                                            | of equation of        |
|   | <i>x</i> = 2.81                                         |                             | A1<br>[6]  |                                                                                                                           |                       |

| Page 6 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE O Level – October/November 2011 | 4037     | 12    |

| 6 | (i)<br>(ii) | $243 + 405x + 270x^{2} + 90x^{3} + 15x^{4} + x^{5}$<br>$243 - 405x + 270x^{2} - 90x^{3} + 15x^{4} - x^{5}$<br>$486 + 540x^{2} + 30x^{4}$<br>$30y^{2} + 540y - 600 = 0$ | B1<br>B1<br>B1<br>B1<br>M1 | Assuming correct terms in x<br>B1 for 486<br>B1 for 540<br>B1 for 30<br>B1 for all terms correct and no extra terms<br>M1 for attempt to obtain a 3 term |
|---|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |             |                                                                                                                                                                        | DM1                        | quadratic equation.<br>DM1 for correct attempt at solution of<br>quadratic                                                                               |
|   |             | <i>y</i> = 1.05                                                                                                                                                        | A1                         | A1 need both solutions                                                                                                                                   |
|   |             | leading to $x = \pm 1.02$                                                                                                                                              | A1<br>[8]                  | A1 need both solutions                                                                                                                                   |
| 7 | (i)         | $16x^{-\frac{1}{2}} - 8 + x^{\frac{1}{2}}$                                                                                                                             | B1, B1,<br>B1              | B1 for each correct term                                                                                                                                 |
|   | (ii)        | $y = 32x^{\frac{1}{2}} - 8x + \frac{2}{3}x^{\frac{3}{2}}(+c)$                                                                                                          | M1<br>A2, 1, 0             | M1 for attempt to integrate a 3 term<br>expression<br>-1 for each error                                                                                  |
|   |             | When $x = 9$ and $y = 30$ , $c = -12$                                                                                                                                  | M1                         | M1 for attempt to find <i>c</i> , must have attempted integration                                                                                        |
|   |             |                                                                                                                                                                        | A1<br>[8]                  | A1 for $c = -12$                                                                                                                                         |
| 8 | (i)         | M(2, -1)                                                                                                                                                               | B1                         | Allow in (ii)                                                                                                                                            |
|   |             | Grad $AB = \frac{8}{6}$ , $\perp$ grad = $-0.75$                                                                                                                       | M1                         | M1 for attempt to find gradient of perpendicular                                                                                                         |
|   |             | CD: $y+1 = -0.75(x-2)$                                                                                                                                                 | DM1<br>A1                  | DM1 for straight line equation using $M$                                                                                                                 |
|   | (ii)        | <i>C</i> (-2, 2)<br><i>D</i> (10, -7)                                                                                                                                  | B1<br>B1, B1               | <ul><li>B1 for <i>y</i> coordinates of <i>C</i> can be awarded in (iii)</li><li>B1 for each of the coordinates for <i>D</i></li></ul>                    |
|   | (iii)       | Area = $\frac{1}{2}\sqrt{12^2 + 9^2}\sqrt{3^2 + 4^2}$                                                                                                                  | M1                         | M1 for attempt at area                                                                                                                                   |
|   |             | $\begin{vmatrix} = 37.5 \\ 0r \frac{1}{2} \begin{vmatrix} -2 & 10 & -1 & -2 \\ 2 & -7 & -5 & 2 \end{vmatrix} = 37.5$                                                   | A1<br>[9]                  |                                                                                                                                                          |

| Page 7 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE O Level – October/November 2011 | 4037     | 12    |

| 9  | (i)  | $\frac{\mathrm{d}y}{\mathrm{d}x} = x.4\cos 4x + \sin 4x$                                                                     | M1<br>B1, A1          | M1 for differentiation of a product<br>B1 for $4\cos 4x$ , A1 all else correct                                            |
|----|------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------|
|    | (ii) | $I = \left(\frac{1}{4}\right) \left[x\sin 4x - \int \sin 4x  dx\right]$                                                      | DM1                   | DM1 for realising integration is form<br>reverse process of (i) – do not need $\left(\frac{1}{4}\right)$<br>until last A1 |
|    |      | $= \left(\frac{1}{4}\right) \left[x\sin 4x - \left(-\frac{1}{4}\cos 4x\right)\right]$                                        | A1, A1<br>B1          | A1 for $x \sin 4x$ , A1 for $\int \sin 4x  dx$<br>B1 for $-\frac{1}{4} \cos 4x$                                           |
|    |      | For definite integral $\left(\frac{1}{4}\right)\left[x\sin 4x - \left(-\frac{1}{4}\cos 4x\right)\right]_{0}^{\frac{\pi}{8}}$ | M1                    | M1 for correct application of limits                                                                                      |
|    |      | $=\frac{\pi}{32}-\frac{1}{16}$ , or 0.0357                                                                                   | A1<br><b>[9]</b>      |                                                                                                                           |
| 10 | (i)  | $2\tan^2 x + 2 = 5\tan x + 5$                                                                                                | M1                    | M1 for use of correct identity                                                                                            |
|    |      | $2\tan^2 x - 5\tan x - 3 = 0$                                                                                                | M1                    | M1 for solution of 3 term quadratic equation                                                                              |
|    |      | $\tan x = -\frac{1}{2}, \tan x = 3$                                                                                          | M1                    | M1 for attempt to solve $tan x = k$ from a 3 term quadratic equation                                                      |
|    |      | $x = 153.4^{\circ}, 333.4^{\circ}$ and $71.6^{\circ}, 251.6^{\circ}$                                                         | A1, A1                | A1 for any pair                                                                                                           |
|    | (ii) | $\sin\!\left(0.5y+\frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$                                                                 | M1                    | M1 for dealing with $\sqrt{2}$ correctly                                                                                  |
|    |      | $0.5y + \frac{\pi}{3} = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}$                                                       | M1<br>M1              | M1 for correct order of operations<br>M1 for correct order of operations and<br>attempt to get a solution in the range    |
|    |      | leading to $y = \frac{5\pi}{6}, \frac{23\pi}{6}$                                                                             | A1, A1<br><b>[10]</b> | Allow decimal equivalents 2.62 and 12.0                                                                                   |

| Page 8 Mark Scheme: Teachers' ver<br>GCE O Level – October/Novemb |                                                                                                 |                           | Syllabus<br>011 4037                                             | Paper<br>12              |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------|--------------------------|
|                                                                   | GCE O Level – Octobel/No                                                                        |                           | 4037                                                             | 12                       |
| <b>11 EITHER</b>                                                  |                                                                                                 |                           |                                                                  |                          |
| (i) $A = 4$                                                       | (i) $A = 4$                                                                                     |                           |                                                                  |                          |
| (ii) $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-x}$          | (ii) $\frac{dy}{dx} = e^{-x} (-2A\sin 2x + 2B\cos 2x) -$                                        |                           | M1 for differentiation of a<br>B1 for $(-2A\sin 2x + 2B\cos 2x)$ | -                        |
| $e^{-x}(A\cos \theta)$                                            | $s2x + B\sin 2x$ )                                                                              | B1                        | B1 for $-e^{-x} (A \cos 2x + B \sin 2x)$                         | $\operatorname{in} 2x$ ) |
|                                                                   | 0, $6 = 2B - A$ , $B = 5$<br>ion acceptable )                                                   | M1<br>A1                  | M1 for substitution to find <i>B</i>                             |                          |
| (iii) when $\frac{dy}{dx}$                                        | = 0,                                                                                            | M1                        | M1 for their $\frac{dy}{dx} = 0$                                 |                          |
| $e^{-x}(p\cos \theta)$                                            | $s2x-q\sin 2x\big)=0$                                                                           | M1                        | M1 for attempt to simplify                                       |                          |
| leading to                                                        | $p \tan 2x = \frac{p}{q} \left(=\frac{6}{13}\right)$                                            | M1                        | M1 for attempt to obtain $\tan 2x = \frac{p}{q}$                 |                          |
| <i>x</i> = 0.216                                                  |                                                                                                 | M1<br>A1<br>[ <b>11</b> ] | M1 for attempt to solve ta                                       | n  2x = k                |
| 11 OR                                                             |                                                                                                 |                           |                                                                  |                          |
|                                                                   | $\frac{-1)\frac{2x}{\left(x^{2}-1\right)}-2x\ln\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{2}}$ | M1<br>B1                  | M1 for differentiation of a<br>B1 $\frac{2x}{(x^2 - 1)}$         | quotient                 |
| Rearrang                                                          | ing to get $k = 2$                                                                              | A1<br>A1                  | A1 for all else correct<br>A1 for rearrangement to ge            | et $k = 2$               |
| (ii) $\partial y = \frac{\mathrm{d}y}{\mathrm{d}x} \mu$           | ζ,                                                                                              | M1                        | M1 for substitution of $x =$ correct method                      | $=\sqrt{5}$ and          |
| leading to                                                        | $\partial y = -0.108 p$                                                                         | $\sqrt{A1}$               | $\sqrt{A1}$ on their <i>k</i>                                    |                          |
| (iii) when $\frac{dy}{dx}$                                        | (iii) when $\frac{dy}{dx} = 0$ , $1 - \ln(x^2 - 1) = 0$                                         |                           | M1 for $\frac{dy}{dx} = 0$ and attempt                           | t to simplify            |
| $\ln(x^2-1)$                                                      | ) = 1                                                                                           | A1                        | A1 for $\ln(x^2 - 1) = 1$                                        |                          |
| $x^2 - 1 = e$                                                     | $x^2 - 1 = e \text{ or } 2.72$                                                                  |                           | A1 for $x^2 - 1 = e$ or 2.72                                     |                          |
| leading to $x = \sqrt{1 + e}$                                     |                                                                                                 | A1                        |                                                                  |                          |
| $y = \frac{1}{e}$                                                 | 1                                                                                               |                           |                                                                  |                          |